本项目是基于Pytorch的语音合成项目,使用的是VITS,VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)是一种语音合成方法,这种时端到端的模型使用起来非常简单,不需要文本对齐等太复杂的流程,直接一键训练和生成,大大降低了学习门槛。
本文将介绍如何使用数据增强和模型修改的方式,在不使用任何预训练模型参数的情况下,在ResNet18网络上对Cifar10数据集进行分类任务。在测试集上,我们的模型准确率可以达到95.46%。在Kaggle的Cifar10比赛上,我训练的模型在300,000的超大Cifar10数据集上依然可以 ...
[导读]心血管疾病已成为全球健康的主要威胁之一,而心律失常作为其常见表现形式,早期检测与干预对降低死亡率至关重要。传统心电图(ECG)监测设备受限于体积、成本及使用场景,难以实现长期连续监测。随着可穿戴技术的突破,基于光电容积脉搏波(PPG ...
本文基于前期介绍的电力变压器,介绍一种基于 LSTM 预测模型的 SHAP 可视化分析教程。 数据集是使用.csv形式进行存储的,包括了除时间列外 “HUFL”, “HULL”, “MUFL”, “MULL”, “LUFL”, “LULL” 和 “OT”7个特征。 将 SHAP 值矩阵传递给条形图函数会创建一个全局 ...
最近我们被客户要求撰写关于LSTM的研究报告,包括一些图形和统计输出。 顾名思义,时间序列数据是一种随时间变化的数据类型。例如,24小时内的温度,一个月内各种产品的价格,一年中特定公司的股票价格 诸如长期短期记忆网络(LSTM)之类的高级深度学习 ...
在快速发展的自然语言处理领域,Transformers 已经成为主导模型,在广泛的序列建模任务中表现出卓越的性能,包括词性标记、命名实体识别和分块。在Transformers之前,条件随机场(CRFs)是序列建模的首选工具,特别是线性链CRFs,它将序列建模为有向图,而CRFs更 ...
本文缘起于一次CNN作业中的一道题,这道题涉及到了基本的CNN网络搭建,能够让人比较全面地对CNN有一个了解,所以想做一下,于是有了本文。 本文缘起于一次CNN作业中的一道题,这道题涉及到了基本的CNN网络搭建,在MNIST数据集上的分类结果,Batch Normalization的 ...